

Automated Stiffener Placement and Tacking

Project Description:

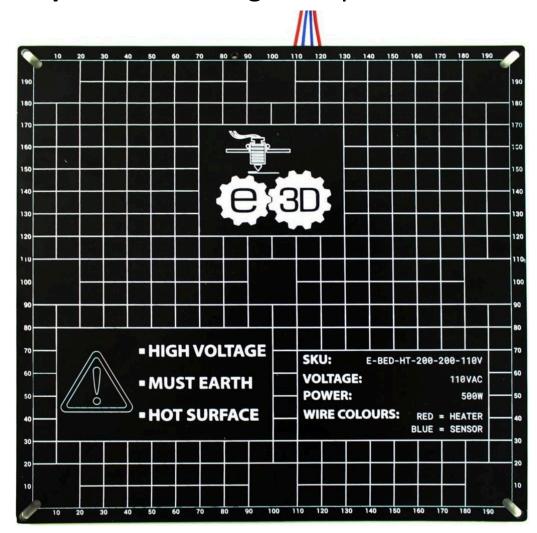
We have been tasked with developing an automated stiffener placement and tacking system utilizing robotic arms. This system serves to reduce labor and improve the accuracy and efficiency of the placement and tacking process.

Heating Element Options

Option 1: K Kernowo Mini Iron

Temperature Range:

❖ 212 − 752 °F


Pros:

- Capable of applying both heat and pressure
- Can reach higher temperatures

Cons:

- ❖ Additional weight
- Cable tension issues

Option 2: E3D High Temp Heated Bed

Temperature Range:

❖ 212 − 392 °F

Pros:

- Capable of heating multiple elements simultaneously
- Can heat entire surface at once

Cons:

Large heating area could possibly lead to slower heat transfer

Adhesive Activation Temperature: 200 °F

Lamination Temperature: 375 °F

System Requirements

Performance:

- Misalignment correction
- Placement accuracy: +/- 0.001 inch
- Versatile for various circuits & stiffeners

Functional:

- Automated grab & placement
- Alignment in 3 DOF (X, Y, θ)
- Heat & pressure adhesive activation

Our Approach:

We will be programming an Epson T6-B and VT6L to place stiffeners onto flexible printed circuit boards, and apply pressure / heat using a heat-bed or hobby-

iron to adhere them. We are creating the "hand" attachments for each arms custom bracket connections using **Solidworks** and conducting thermal analysis with Ansys to ensure proper adhesion and lack of

deformations in any of the involved materials.

Robotic Arms

Epson T6-B

Epson VT6L

Expected Outcomes

- Automated stiffener placement and tacking system design
 - Epson interface Simulink program

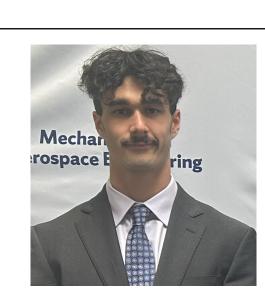
EPSON

Ansys - Heat analysis

- Bill of materials
- System replication instruction
- Validation testing process

- Project Lead
- **Aer** Programming and Automation Engineer
 - **CAD Design Engineer Lead**
 - **3D Printing Engineer**
 - **Electronics Integration Engineer**
 - Test and Analysis Lead Engineer

Aerospace Engineer



Materials Engineer

Budget Coordinator

Calculations Engineer

Toby Webber

- CAD Modeling and Design Engineer
- **3D Printing Engineer**
- Test and Analysis Engineer

- Heat Transfer Analyst
- Thermal and Pressure Systems Engineer
- **Documentation Coordinator**

Dr. Quinn Qiao

